Share Email Print
cover

Proceedings Paper

Optical Cellular Logic Computers And Space-Variant Logic Gate Array
Author(s): Toyohiko Yatagai
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

A general approach is described for optically implementing massively parallel logic. Cellular array logic and the cellular automaton theory are emphasized as a guiding principle in the design of optical parallel computers. These theoretical approaches are important clues to elucidate the general characteristics and the limitation of optical parallel logic. We propose the use of Minnick's cellular logic array, which is well known as a simple two-dimensional array of processor elements to synthesis arbitrary logic functions. With reference to the optical cellular logic architecture, a space-variant logic is proposed, that is, different logical operations are performed in parallel. This space-variant logic gate technique is related to the multiple instruction-stream multiple data-stream (MIMD) logic operation technique. The new method is the MIMD extension of Tanida and Ichioka's optical shadow-casting logic, which is based on a space-invariant or a SIMD (single instruction-stream multiple data-stream) logic gate array. Simple examples are demonstrated. An application of this method to the Minnick cellular architecture is discussed. Finally we will discuss the possibility of the Minnick cellular array to reconfigurable architectures and self-organizing architectures, which are implemented by changing the interconnection networks.

Paper Details

Date Published: 13 February 1986
PDF: 8 pages
Proc. SPIE 0634, Optical and Hybrid Computing, (13 February 1986); doi: 10.1117/12.964012
Show Author Affiliations
Toyohiko Yatagai, University of Tsukuba (Japan)


Published in SPIE Proceedings Vol. 0634:
Optical and Hybrid Computing
Harold H. Szu, Editor(s)

© SPIE. Terms of Use
Back to Top