Share Email Print
cover

Proceedings Paper

Computer-Generated Hologram Design For A Magneto-Optic Spatial Light Modulator
Author(s): Glenn S. Himes; Joseph N. Mait
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

A magneto-optic spatial light modulator (MOSLM) has been proposed for use as a Fourier plane filter in a coherent optical correlator. Its binary nature and limited, presently small, space-bandwidth product constrain any filter design. Although binary quantization allows a maximum number of Fourier values to be coded, quantization and reconstruction error is high except in a few cases. To reduce these errors, a cell-oriented binary coding technique, the delayed-sample method, is used. Three cell sizes are considered: 2 x 1 pixels, 3 x 1 pixels, and 4 x 1 pixels. Through coding, a 2 x 1 cell can realize three real values {-1,0,1} as opposed to only two {4,1} for binary quantization; however, there is a trade-off in the number of Fourier values that can be coded. For a 2 x 1 cell the number is reduced by one-half. A 3 x 1 cell can realize seven complex values, but with a one-third reduction in the number of coded Fourier values. Finally, a 4 x 1 cell is capable of realizing nine complex values with a one-fourth reduction in the number of coded values. The trade-off between quantization error and number of Fourier values coded is examined qualitatively using a 128 x 128 MOSLM. Reconstructions from coding using different cell sizes are compared to reconstructions from binary quantization. In addition to coding, hologram replication is used to improve reconstruction error. Sampling issues relating to the size of the filter response are also discussed.

Paper Details

Date Published: 5 February 1990
PDF: 11 pages
Proc. SPIE 1151, Optical Information Processing Systems and Architectures, (5 February 1990); doi: 10.1117/12.962223
Show Author Affiliations
Glenn S. Himes, University of Virginia (United States)
Joseph N. Mait, University of Virginia (United States)


Published in SPIE Proceedings Vol. 1151:
Optical Information Processing Systems and Architectures
Bahram Javidi, Editor(s)

© SPIE. Terms of Use
Back to Top