Share Email Print
cover

Proceedings Paper

Hydrogenation Of InP Surface By Phosphorus-Added Hydrogen Plasma
Author(s): Takashi Sugino; Aniroot Boonyasirikool; Hiroshi Hashimoto; Junji Shirafuji
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Hydrogenation of InP surface has been attempted by the glow discharge plasma of hydrogen and phosphine mixture. It is shown by Auger spectroscopy that the use of the phosphorus-added hydrogen plasma suppresses effectively the preferential etching of phosphorus at the InP surface. A mirror surface of InP is maintained after the plasma exposure even at 250°C. It is verified by SIMS analysis that hydrogen with the density higher than 1 x 1018cm -3 diffuses into the bulk InP to 500 nm in depth. Photoluminescence(PL) intensity of the hydrogenated InP surface is increased by a factor of 2. An intentional slow etching and subsequent PL measurement of the hydrogenated surface shows a significant increase in the PL intensity at the hydrogen-treated surface in addition to a moderately enhanced PL intensity over the hydrogen diffused region. Enhancement of the PL intensity over the hydrogen diffused region may relate to the defect passivation. In addition, a significant increase in the PL intensity at the surface is explained in terms of the band bending at the surface possibly due to an introduction of phosphorus vacancies.

Paper Details

Date Published: 28 November 1989
PDF: 9 pages
Proc. SPIE 1144, 1st Intl Conf on Indium Phosphide and Related Materials for Advanced Electronic and Optical Devices, (28 November 1989); doi: 10.1117/12.962005
Show Author Affiliations
Takashi Sugino, Osaka University (Japan)
Aniroot Boonyasirikool, Osaka University (Japan)
Hiroshi Hashimoto, Osaka University (Japan)
Junji Shirafuji, Osaka University (Japan)


Published in SPIE Proceedings Vol. 1144:
1st Intl Conf on Indium Phosphide and Related Materials for Advanced Electronic and Optical Devices

© SPIE. Terms of Use
Back to Top