Share Email Print

Proceedings Paper

Chemical Nature Of Encapsulant-Semiconductor Interface After Rapid Thermal Annealing For InP MISFETs
Author(s): M. D. Biedenbender; V. J. Kapoor
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The chemical nature of the encapsulant-indium phosphide interface before and after rapid thermal annealing (RTA) was investigated using X-ray photoelectron spectroscopy (XPS). Rapid thermal annealing was investigated for ion implanted indium phosphide (InP) metal-insulator-semiconductor field-effect transistor (MISFET) fabrication. Silicon nitride films were used to encapsulate InP for RTA at 700 to 800 C for 10 to 60 sec in pure N2 or H2. The chemical nature of the encapsulant-InP interactions was examined using a sequence of high-resolution X-ray photoelectron spectra at four depths through the interfacial region for the In 3d5/2, P 2p, N 1s, Si 2p, and 0 1s peaks. The possible interfacial native oxides observed from the In 3d5/2 peak were In-O-H compounds such as In(OH)3, In0-0H, or In02. No InPO4 was observed in the P 2p peak. The N 1s peak had a component consistent with N-H or N-N bonding in which the area decreased by 42 to 100% after RTA. Changes in the width of the silicon oxy-nitride component of the Si 2p and 0 1s peaks indicated changes in the composition of the interfacial oxides after RTA. InP MISFET's were made on 2 inch semi-insulating wafers using a 150 keV, 4x1013 cm-2 silicon implant for the source and drain regions. The implanted substrates were rapid thermal annealed at 700 C for 30 sec in N2 or H2. The MISFET's were fabricated with a phosphorus oxide/silicon dioxide gate insulator which had a phosphorus oxide region at the insulator-InP interface. The gate insulator had a breakdown field of 2.5x10 6 V/cm and a resistivity of 1x10 15 Ω-cm. The InP MISFET's had transconductance of 27 mS/mm, channel electron mobility of 1200 cm2V-lsec-1, and drain current drift of 7%.

Paper Details

Date Published: 28 November 1989
PDF: 9 pages
Proc. SPIE 1144, 1st Intl Conf on Indium Phosphide and Related Materials for Advanced Electronic and Optical Devices, (28 November 1989); doi: 10.1117/12.962003
Show Author Affiliations
M. D. Biedenbender, University of Cincinnati (United States)
V. J. Kapoor, University of Cincinnati (United States)

Published in SPIE Proceedings Vol. 1144:
1st Intl Conf on Indium Phosphide and Related Materials for Advanced Electronic and Optical Devices
Louis J. Messick; Rajendra Singh, Editor(s)

© SPIE. Terms of Use
Back to Top