Share Email Print
cover

Proceedings Paper

Technical Approach For The Development Of Structural Composite Mirrors
Author(s): Robert E. Freeland; Paul M. McElroy; Robert D. Johnston
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Light weight, high precision, low cost structural composite mirrors have tremendous potential for enabling affordable space telescope systems. The Large Deployable Reflector (LDR) is an example of such a system. It is a 20 meter diameter, earth orbiting submillimeter telescope. Its technology requirements are for panels that are from 1 to 2 meters in size with areal densities of 5 to 10 Kg/m2 and surface figure precision of a few microns. JPL and the Hexcel Corp. have entered into a joint technology activity, sponsored by the NASA Precision Segmented Reflector (PSR) Program, for the development of such mirrors. Highly specialized manufacturing and materials processing techniques have been developed by Hexcel for the production of high precision, light weight and low cost composite mirrors. JPL has developed an analytical simulation capability for composite mirrors that characterizes their mechanipal and thermal performance in terms of the materials properties and configurations. This capability is the basis of detail panel designs for thermal stability, test simulation, test/analysis correlation and projection of performance for specific applications. This combination of capabilities from both organizations has resulted in the development of graphite/epoxy mirrors up to 1.0 meter in size with surface precision of a few microns rms while weighing only 6 Kg/m2. This paper describes that development program. The PSR Panel Program, over a four year period is for mirrors up to 1.5 meters with surface precision and LDR orbital thermal stabilities on the order of one micron.

Paper Details

Date Published: 20 September 1989
PDF: 14 pages
Proc. SPIE 1114, Active Telescope Systems, (20 September 1989); doi: 10.1117/12.960845
Show Author Affiliations
Robert E. Freeland, California Institute of Technology (United States)
Paul M. McElroy, California Institute of Technology (United States)
Robert D. Johnston, Hexcel Corporation (United States)


Published in SPIE Proceedings Vol. 1114:
Active Telescope Systems
Francois J. Roddier, Editor(s)

© SPIE. Terms of Use
Back to Top