Share Email Print

Proceedings Paper

Equilibrium Barrier Formation In p-on-N And P-on-n Graded HgCdTe Heterojunctions
Author(s): Frank L. Madarasz; Frank Szmulowicz
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We present results of our calculations of the equilibrium barrier formation in graded Hg1_xCdxTe heterojunctions using a highly accurate numerical model. Results for wide gap-p on narrow gap-n structures (Pn) are presented together with a review of our earlier results on narrow gap-p on wide gap-n (pN) heterojunctions [J. Appl. Phys. 62, 3267 (1987); 64, 6373 (1988)1 in which the barrier forms only in the conduction band. All band profiles are calculated with and without (common anion rule) a valence band offset; clear trends are observed. In the case of the narrow gap-p on wide gap-n heterostructures, the band profiles calculated with and without the valence band offset do not differ significantly. On the other hand, for the wide gap-p on narrow gap-n heterostructures, and using the common anion rule, the valence band tends to bow down on the n-side for the larger grading widths. The band bowing acts as a potential barrier for the minority carriers. When the valence band offset is included, though, the existence of a barrier to minority carriers depends upon the grading width: for the most narrowly graded junctions, a potential well for the minority carriers is present. In our calculations, we assume a valence band offset of 300 meV for HgTe:CdTe. We cannot make general predictions with regard to conditions needed to support the formation and growth of a barrier either in the conduction or valence band; instead; we find the band profiles to be a complex function of all the junction design parameters.

Paper Details

Date Published: 12 September 1989
PDF: 17 pages
Proc. SPIE 1106, Future Infrared Detector Materials, (12 September 1989); doi: 10.1117/12.960635
Show Author Affiliations
Frank L. Madarasz, University of Alabama in Huntsville (United States)
Frank Szmulowicz, University of Dayton Research Institute (United States)

Published in SPIE Proceedings Vol. 1106:
Future Infrared Detector Materials
Jan W. Baars; Randolph E. Longshore, Editor(s)

© SPIE. Terms of Use
Back to Top