Share Email Print
cover

Proceedings Paper

Novel Waveplate Designs For The IR Spectrum
Author(s): Jeffrey H. Bohn; David A. Roberts
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Infrared optical systems, including ellipsometers and sensors, make frequent use of traditional waveplate technology. In some cases, the limited spectral bandwidth associated with conventional IR waveplates has limited the wavelength range over which these systems can perform. The mathematical procedures for designing broadband waveplates have long been available, but suitable materials for IR applications have been limited. Recent efforts in IR crystal growth have provided a wider range of birefringent materials which can be used for novel waveplate designs. This paper examines basic waveplate theory, including the relatively unknown effects of etaloning in the presence of finite surface reflectance, and proceeds to a discussion of both conventional and novel waveplate designs. These include tunable and achromatic waveplates covering all or part of the NIR-IR wavelength spectrum. Materials such as AgGaS2, MgF2, CdS and mixed CdSxSe1-x crystals will be discussed. Several designs specific to multiple wavelength lasers and frequency agile lasers will be covered.

Paper Details

Date Published: 25 September 1989
PDF: 12 pages
Proc. SPIE 1104, Growth, Characterization, and Applications of Laser Host and Nonlinear Crystals, (25 September 1989); doi: 10.1117/12.960599
Show Author Affiliations
Jeffrey H. Bohn, Cleveland Crystals, Inc. (United States)
David A. Roberts, Cleveland Crystals, Inc. (United States)


Published in SPIE Proceedings Vol. 1104:
Growth, Characterization, and Applications of Laser Host and Nonlinear Crystals
Jui Teng Lin, Editor(s)

© SPIE. Terms of Use
Back to Top