Share Email Print

Proceedings Paper

Supercritical Helium Cooling Of Optical Sensors
Author(s): Edward W. Vendell
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The operational restrictions on several current interferometer/radiometer instruments are such that focal planes, optical components, and telescope baffles must be maintained at temperatures near 8°K, 20°K, and 80°K respectively. One reliable method of achieving this is to expel supercritical helium from a supply dewar at constant pressure by applying energy to a dewar heater; the resulting flow then passes serially through three (or more) heat exchangers to achieve the desired cooling before being vented through a pressure regulator valve. A convenient set of approximate, time-dependent equations that can be programmed on a hand-held calculator for the preliminary design of a supercritical helium cooling system are presented in this paper. Predicted temperature and mass flow rates based on the simplified equations agree within 5 percent of those resulting from analyses by other researchers. The equations are applied to a particular cooler system for the CIRRIS 82 instrument scheduled to be flown on the Space Shuttle in 1982.

Paper Details

Date Published: 3 November 1980
PDF: 9 pages
Proc. SPIE 0245, Cryogenically Cooled Sensor Technology, (3 November 1980); doi: 10.1117/12.959346
Show Author Affiliations
Edward W. Vendell, Utah State University (United States)

Published in SPIE Proceedings Vol. 0245:
Cryogenically Cooled Sensor Technology
Ronald J. Huppi, Editor(s)

© SPIE. Terms of Use
Back to Top