Share Email Print

Proceedings Paper

Laser Chemical Vapor Deposition-Applications In Materials Processing
Author(s): S. D. Allen
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Laser chemical vapor deposition (LCVD) uses a focused laser beam to locally heat the substrate and drive the CVD deposition reaction. Several different deposition reactions and substrates have been examined as a function of intensity and irradiation time using a CO2 laser source: Ni on SiO2, TiO2 on SiO2, TiC on SiO2, and TiC/on stainless steel. LCVD film thicknesses range from <100Å to >20μm. Deposition rates of mm/min have been observed for LCVD Ni and TiC and 20 iim/min for LCVD TiO2. The diameter of the deposited films is dependent on irradiation conditions and can be as small as 0.10 the laser beam diameter. The LCVD films exhibit excellent physical properties such as adherence, conductivity, hardness and smoothness. The advantages of LCVD are the same as other laser processing techniques, i.e., control of area and depth heated, rapid heating and cooling, and cleanliness. Possible applications of this technique include: formation of ohmic contacts and localized protective coatings in semiconductor devices; localized coatings and dopants for waveguide optics; surface hardening and alloying of machine surfaces; welding of ceramic materials; and generation of new materials.

Paper Details

Date Published: 24 January 1980
PDF: 8 pages
Proc. SPIE 0198, Laser Applications in Materials Processing, (24 January 1980); doi: 10.1117/12.958020
Show Author Affiliations
S. D. Allen, University of Southern California (United States)

Published in SPIE Proceedings Vol. 0198:
Laser Applications in Materials Processing
John F. Ready, Editor(s)

© SPIE. Terms of Use
Back to Top