Share Email Print

Proceedings Paper

Multiple-Frequency Heterodyne Correlation Radiometry
Author(s): Malvin Carl Teich
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A heterodyne correlation radiometer is proposed for the sensitive detection of radiating species whose Doppler shift is known, but whose presence we wish to affirm. Such radiation (which may be actively induced) can arise, for example, from remote molecular emitters, impurities and pollutants, trace minerals, chemical agents, or a general multiline source. A radiating sample of the species to be detected is physically made a part of the laboratory receiver, and serves as a kind of frequency-domain template with which the remote radiation is correlated, after heterodyne detection. The system is expected to be especially useful for the detection of sources whose radiated energy is distributed over a large number of lines, with frequencies that are not necessarily known. Neither a stable nor a tunable local oscillator is required. It is shown that the minimum detectable power is expressible in a form similar to that for conventional heterodyning (for both quantum-noise-limited and Johnson-noise-limited detectors). The notable distinction is that the performance of the proposed system improves with increasing number of remotely radiating signal lines and increasing locally produced radiation power. Performance degradation due to undesired impurity radiation is considered and shown not to be a problem in general. The technique should be applicable over a broad frequency range from the microwave to the optical, with its most likely use in the infrared.

Paper Details

Date Published: 30 December 1976
PDF: 14 pages
Proc. SPIE 0082, Unconventional Spectroscopy, (30 December 1976); doi: 10.1117/12.954885
Show Author Affiliations
Malvin Carl Teich, Columbia University (United States)

Published in SPIE Proceedings Vol. 0082:
Unconventional Spectroscopy
J. Morris Weinberg, Editor(s)

© SPIE. Terms of Use
Back to Top