Share Email Print
cover

Proceedings Paper

Single Level Dry Developable Resist Systems, Based On Gas Phase Silylation
Author(s): Jack P. W. Schellekens; Robert-Jan Visser
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In this paper various single level resist systems are presented that combine gas phase silylation with dry development. For novolak-diazoquinone type resists it is shown that the photoselectivity of the silylation process is determined, to a large extent, by the presence of hydrogen bonds between the resin and the un-exposed sensitizer. Upon irradiation these physical crosslinks are replaced by weaker hydrogen bonds between the resin and the indene-carboxylic acid. The effect of the presilylation bake temperature and decarboxylation are discussed. Also the influence of decomposition of the photoactive compound on the selectivity is shown. Other systems presented in this paper are based on chemical crosslinking of the resist. SUPER (SUbmicron Positive dry Etch Resist) is based on the combination of acid-catalyzed crosslinking and gas phase silylation. Because of the chemistry that is used, SUPER can be an interesting candidate for DUV-lithography. Crosslinking of, novolak-diazoquinone type photoresists is another possibility to create a selectivity for the silylation process. A system based on electron beam lithography is presented. Sub-half-micron features, without problems with the proximity effect, are shown.

Paper Details

Date Published: 30 January 1989
PDF: 9 pages
Proc. SPIE 1086, Advances in Resist Technology and Processing VI, (30 January 1989); doi: 10.1117/12.953033
Show Author Affiliations
Jack P. W. Schellekens, Philips Research Laboratories (Netherlands)
Robert-Jan Visser, Philips Research Laboratories (Netherlands)


Published in SPIE Proceedings Vol. 1086:
Advances in Resist Technology and Processing VI
Elsa Reichmanis, Editor(s)

© SPIE. Terms of Use
Back to Top