Share Email Print

Proceedings Paper

Theoretical Modelling Of RF-Excited Laser Plasmas
Author(s): Kurt Schroder
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A model of the homogenous CO2 laser plasma is presented which can be used to describe the efficiency of laser operation for both the DC and the RF- discharge. As laser gas a mixture of CO2, N2, and He with an admixture of Xe was used. To simplify the calculations the distribution of the electron energy was considered to be a Maxwellian one which makes it possible to avoid the solution of Boltzmann's equation. In addition only the most important collision cross sections were used, namely the cross sections for excitation of vibrational modes in CO2 and N2, for attach-ment and electronic excitation of CO2, for ionisation of CO2, N2, and Xe, for elastic collisions and for momentum transfer. Under these assumptions the energy and the particle density balances for electrons can be put up. As a result the energy transfer to the different levels in CO2 and N2 and the electron density can be calculated which can be used to estimate the efficiency of the conversion from electrical power to laser radiation. The evaluation of this model showes that the efficiency of the RF- discharge is a little bit higher than that of the DC- discharge which is mainly due to the more favourable conditions for ionisation in the RF- discharge. The admixture of xenon causes a sig-nificant increase of the electron density for a given value of E/N which raises the efficiency considerably.

Paper Details

Date Published: 20 June 1989
PDF: 8 pages
Proc. SPIE 1031, 7th Intl Symp on Gas Flow and Chemical Lasers, (20 June 1989); doi: 10.1117/12.950505
Show Author Affiliations
Kurt Schroder, University of Technology Vienna (Austria)

Published in SPIE Proceedings Vol. 1031:
7th Intl Symp on Gas Flow and Chemical Lasers
Dieter Schuoecker, Editor(s)

© SPIE. Terms of Use
Back to Top