Share Email Print

Proceedings Paper

A Theoretical Analysis Of Third-Order Nonlinear Optical Properties Of -Electron Conjugated Molecules
Author(s): Brian M. Pierce
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

An accurate and computationally tractable theoretical procedure for the calculation of the non-resonant, electronic components of y(0;0,0,0), y(-3ω);ω)ω,ω), and y(-2ω);ω,ω,0) can be constructed. This procedure partitions y into a σ-electron component (yσ) and a π-electron component (yπ). The yσ term is evaluated using the bond-additivity approximation; the in term is calculated using the semi-empirical INDO all-valence-electron molecular orbital method combined with full single- and double-excitation configuration interaction (SDCI) of singlet it-electron configurations, and Orr and Ward's sum-over-states expression for y. Calculations of the effect of chain length, conformation, methyl substitution, and polarity on the values of y for π-electron conjugated hydrocarbons indicate that y is most strongly influenced by conjugation chain length.

Paper Details

Date Published: 21 December 1988
PDF: 17 pages
Proc. SPIE 0971, Nonlinear Optical Properties of Organic Materials, (21 December 1988); doi: 10.1117/12.948261
Show Author Affiliations
Brian M. Pierce, Hughes Aircraft Company (United States)

Published in SPIE Proceedings Vol. 0971:
Nonlinear Optical Properties of Organic Materials
Garo Khanarian, Editor(s)

© SPIE. Terms of Use
Back to Top