Share Email Print
cover

Proceedings Paper

Hydrogen Defects And Optical Damage In LiNbO3
Author(s): Dunbar P. Birnie
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The literature pertaining to hydrogen defects dissolved in lithium niobate has been reviewed. Particular attention has been given to the infra-red absorption spectra. The polarization variations of the spectra give indications about the structure of hydrogen defects in lithium niobate. In undoped crystals hydrogen defects sit in the close-packed oxygen plane, adjacent to vacant octahedral sites that result from nonstoichiometry. In magnesium doped crystals the observed threshold effect influences the hydrogen site; at low Mg concentrations there are sufficient vacant octahedral sites, but at high concentrations the hydrogen must sit adjacent to cations and are therefore pushed out of the close-packed oxygen plane. This changes the IR spectra. The hydrogen solution model is discussed with respect to optical damage effects in lithium niobate.

Paper Details

Date Published: 17 January 1989
PDF: 7 pages
Proc. SPIE 0968, Ceramics and Inorganic Crystals for Optics, Electro-Optics, and Nonlinear Conversion, (17 January 1989); doi: 10.1117/12.948130
Show Author Affiliations
Dunbar P. Birnie, University of Arizona (United States)


Published in SPIE Proceedings Vol. 0968:
Ceramics and Inorganic Crystals for Optics, Electro-Optics, and Nonlinear Conversion
Robert W. Schwartz, Editor(s)

© SPIE. Terms of Use
Back to Top