Share Email Print
cover

Proceedings Paper

Fully Scaled 0.5 Micron CMOS Technology Using Variable Shaped Electron Beam Lithography
Author(s): Philip Coane; Paul Rudeck; Li-Kong Wang; Alan Wilson; Fritz Hohn
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Over the past several years, CMOS technology has been continuously driven to achieve enhanced performance and higher density. The resulting reduction in semiconductor dimensions has surpasssed the limits attainable by the most advanced optical lithography tools. As a result, the utilization of electron beam lithography direct writing techniques to satisfy VLSI patterning requirements has increased significantly. In principle, variable shaped electron beam systems are capable of writing linewidths down to at least 0.1 micron. However, the successful application of sub-micron scaling principles to device fabrication involves an integration of tool capability and resist process control. In order to achieve the realization of improved CMOS device performance and circuit density, sub-micron ground rules (line width control and overlay) must be satisfied over the full chip. This paper reports on a high performance, fully scaled 0.5 micron CMOS technology developed for VLSI appli-cations. Significant gains in both density and performance at reduced power supply levels are realized over previously reported 1.0 micron technology. The details of the integrated lithography strategy used to achieve these results are presented.

Paper Details

Date Published: 14 June 1988
PDF: 10 pages
Proc. SPIE 0923, Electron-Beam, X-Ray, and Ion Beam Technology: Submicrometer Lithographies VII, (14 June 1988); doi: 10.1117/12.945656
Show Author Affiliations
Philip Coane, IBM Thomas J. Watson Research Center (United States)
Paul Rudeck, IBM Thomas J. Watson Research Center (United States)
Li-Kong Wang, IBM Thomas J. Watson Research Center. (United States)
Alan Wilson, IBM Thomas J. Watson Research Center (United States)
Fritz Hohn, IBM Thomas J. Watson Research Center (United States)


Published in SPIE Proceedings Vol. 0923:
Electron-Beam, X-Ray, and Ion Beam Technology: Submicrometer Lithographies VII
Arnold W. Yanof, Editor(s)

© SPIE. Terms of Use
Back to Top