Share Email Print

Proceedings Paper

Digital Speckle Pattern Interferometry (DSPI) Using A 100X100 Imaging Array
Author(s): Katherine Creath
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Digital speckle pattern interferometry (DSPI) is a variation of electronic speckle pattern interferometry (ESPI). Both methods use the same basic techniques for nondestructive testing, but DSPI processes speckle pattern data digitally in a computer instead of using analog electronics to enhance fringe contrast. Both testing methods are an outgrowth of holography and speckle interferometry. The system described here uses a Reticon 100x100 diode array camera with an integration time of 5 ms, instead of a television camera, coupled to an HP-9836C computer. The use of digital methods provides flexibility in measurement and processing. Results of measuring both static and dynamic object movement show high-contrast fringes with electronic noise at 1/500 of the dynamic range. A new technique for testing vibrating objects has been developed that significantly in-creases fringe visibility. It involves subtracting a reference frame containing only self-interference terms and no cross-interference term from a time-averaged data frame of the object vibration. This reference frame is created by vibrating a reference mirror at a high amplitude while the object is at rest. Using software written in assembly language, the maximum frame rate is 3 processed frames/sec. Trade-offs of using TV systems with analog processing vs diode arrays with digital processing are discussed.

Paper Details

Date Published: 8 November 1984
PDF: 7 pages
Proc. SPIE 0501, State-of-the-Art Imaging Arrays and Their Applications, (8 November 1984); doi: 10.1117/12.944673
Show Author Affiliations
Katherine Creath, University of Arizona (United States)

Published in SPIE Proceedings Vol. 0501:
State-of-the-Art Imaging Arrays and Their Applications
Keith N. Prettyjohns, Editor(s)

© SPIE. Terms of Use
Back to Top