Share Email Print
cover

Proceedings Paper

Possible Error-Control Coding Strategies For An Optical Disk Buffer
Author(s): David L. Livingston
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In order to develop good error-control coding strategies for a read/write optical disk it is necessary to know the error characteristics of the media. Since the technology is in its genesis, empirical information on the error traits is not available. It is thus necessary to base the design of coding strategies on projected behavior and similar, well-established technologies. We examine the generation of a suitable error control strategy for an optical disk buffer which is to be used for the temporary or archival storage of large quantities of data. The buffer consists of multiple, read/write, magneto-optic surfaces which are independently accessable. Information is stored in a spiral eight-bit wide track; thus an appropriate error-control code must be capable of correcting symbol and burst errors. The properties of Reed-Solomon codes, which are well known for their packet protection capabilites, are considered for such an application. Since there are multiple surfaces, we present the possibility of coding across the surfaces. With this type of coding an entire surface can be lost without destroying the integrity of the data. Intermittent operation of a read/write device such as a laser could be corrected, thus providing a graceful degradation of operation. The interaction of independent access and simultaneous read/write capabilites with the coding scheme is considered.

Paper Details

Date Published: 2 June 1988
PDF: 7 pages
Proc. SPIE 0899, Optical Storage Technology and Applications, (2 June 1988); doi: 10.1117/12.944612
Show Author Affiliations
David L. Livingston, Old Dominion University (United States)


Published in SPIE Proceedings Vol. 0899:
Optical Storage Technology and Applications
Donald B. Carlin; Albert A. Jamberdino; Yoshito Tsunoda, Editor(s)

© SPIE. Terms of Use
Back to Top