Share Email Print

Proceedings Paper

Emulsification Of Eutectic Salt Mixtures In Fluid Vehicles
Author(s): J W Vanderhoff; M S El-Aasser; T W Hawkins
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

High-internal-phase-volume emulsions of 75 volt 3/18/79 potassium iodide/sodium iodide/ urea model eutectic salt mixture in 83.5/16.5 Sartomer R-45HT hydroxy-terminated polybutadi-ene/Nujol mineral oil binder mixture were prepared at 60°C using water-in-oil emulsifiers and cured with isophorone diisocyanate or Desmodur N-100. The Nujol mineral oil enhanced the emulsification with a negligible reduction in the tensile properties of the cured elastomer. The average emulsion droplet sizes were ca. 200 nm initially, but increased slowly during curing to 500-1000 nm. The coalescence of the emulsion droplets followed the second-order dependence predicted by the von Smoluchowski diffusion-controlled flocculation; the rate constants were 1.05x10-18 and 9.58x10-18 cc/droplet-sec for dirnethyldioctadecylammonium bromide and Span 85 sorbitan trioleate, respectively. The isophorone diisocyanate reacted with emulsifiers containing primary hydroxyl or amine groups, to give unstable emulsions or no emulsions at all. Dimethyldioctadecylammonium bromide with no primary hydroxyl or amine groups, however, did not react with isocyanates and gave stable emulsions. The reaction of the R-45HT hydroxy-terminated polybutadiene with isophorone diisocyanate followed the expec-ted second-order kinetics with a rate constant of 3.42x10-4 liters/mole-sec at 60°C. The tensile properties of the cured elastomers and emulsions generally increased with increasing NCO/OH ratio up to 1.6/1.0. With increasing volume fraction of dispersed phase, the maximum stress (tensile strength) decreased, the maximum strain (percent elongation) increased, and the initial modulus (tensile modulus) decreased, in contrast to the behavior of conventional filled polymer systems; however, the maximum stresses were in accord with theoretical values for a filled polymer in which the filler particles bear no load, the initial moduli were in accord with the predictions of an isostrain model, and the maximum strain increased with in-creasing volume fraction of dispersed phase; these unusual variations, which were attributed to the liquid nature of the emulsion droplets, were used to estimate the elastomer proper-ties required to give the desired properties: 60-100 psi maximum stress, 80-150% maximum strain, and 500-2000 psi initial modulus for an 88/12 eutectic salt/crosslinked polybutadi-ene composite containing 20% aluminum particles. The addition of 20% aluminum particles gave a modest improvement in tensile properties, and the addition of 2.5% or 3.5% submicroscopic carbon black particles gave a greater improvement; however, the tensile properties were still slightly short of the desired properties.

Paper Details

Date Published: 9 May 1988
PDF: 13 pages
Proc. SPIE 0872, Propulsion, (9 May 1988); doi: 10.1117/12.943758
Show Author Affiliations
J W Vanderhoff, Lehigh University (United States)
M S El-Aasser, Lehigh University (United States)
T W Hawkins, Lehigh University (United States)

Published in SPIE Proceedings Vol. 0872:
Joseph Flanagan, Editor(s)

© SPIE. Terms of Use
Back to Top