Share Email Print
cover

Proceedings Paper

Deep Uv And Thermal Hardening Of Novolak Resists
Author(s): Kevin J. Orvek; Michael L. Dennis
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The use of deep UV resist hardening for high temperature resist-masked processes is becoming more widespread throughout the semiconductor industry. In this report we present data on the wavelength and thermal dependence of the deep UV crosslinking process in novolak resin obtained through dissolution studies and SEM micrographs. An excimer laser was used to provide light of differing wavelengths. The results indicate that longer wavelengths near 308 nm promote crosslinking throughout the 1.5 micron thick resin, while shorter wavelengths induce crosslinking to limited depths. Heating of the wafer during the deep UV exposure is shown to greatly accelerate the crosslinking process, compared to a sequential expose and bake process. SEM micrographs of various stages of hardening in resist are shown. The resist hardening process employed by one commercial system is discussed in terms of the findings of this study.

Paper Details

Date Published: 25 August 1987
PDF: 9 pages
Proc. SPIE 0771, Advances in Resist Technology and Processing IV, (25 August 1987); doi: 10.1117/12.940335
Show Author Affiliations
Kevin J. Orvek, Texas Instruments Incorporated (United States)
Michael L. Dennis, University of New Mexico (United States)


Published in SPIE Proceedings Vol. 0771:
Advances in Resist Technology and Processing IV
Murrae J. Bowden, Editor(s)

© SPIE. Terms of Use
Back to Top