Share Email Print
cover

Proceedings Paper

PRISM: A Practical Mealtime Imaging Stereo Matcher
Author(s): H K. Nishihara
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A fast stereo-matching algorithm designed to operate in the presence of noise is described. The algorithm has its roots in the zero-crossing theory of Marr and Poggio but does not explicitly match zero-crossing contours. While these contours are for the most part stably tied to fixed surface locations, some fraction is always perturbed significantly by system noise. Zero-crossing contour based matching algorithms tend to I- very sensitive to these local distortions and ar, prevented from operating well on signals with moderate noise levels even though a substantial amount of information may still be present. The dual representation�regions of constant sign in the V2G convolution persist much further into the noise than does the local geometry of the zero-crossing contours that delimit them. The PRISM system was designed to test this approach. The initial design task of the implementation has been to rapidly detect obstacles in a robotics work space and determine their rough extents and heights. In this case speed and reliability are important but precision is less critical. The system uses a pair of inexpensive vidicon cameras mounted above the workspace of a PUMA robot manipulator. The digitized video signals are fed to a high speed digital convolver that applies a 322 VG operator to the images at a 106 pixel per second rate. Matching is accomplished in software on a lisp machine with individual near/far tests taking less than i3luth of a second. A 36 by 26 matrix of absolute height measurements - in mm - over a 100 pixel disparity range is produced in 30 seconds from image acquisition to final output. Three scales of resolution are used in a coarse guides fine search. Acknowledgment: This report describes research done at the Artificial Intelligence Laboratory of the Massachusetts Institute of 'Technology Support for the laboratory's artificial intelligence research is provided in part by the Advanced Research Projects Agency of the Department of Defense under Office of Naval Research contract N00014-80-C-0505 and in part by National Science Foundation Grant 79-23110MCS.

Paper Details

Date Published: 16 February 1984
PDF: 9 pages
Proc. SPIE 0449, Intelligent Robots: 3rd Intl Conf on Robot Vision and Sensory Controls, (16 February 1984); doi: 10.1117/12.939233
Show Author Affiliations
H K. Nishihara, MIT Artificial Intelligence Laboratory (United States)


Published in SPIE Proceedings Vol. 0449:
Intelligent Robots: 3rd Intl Conf on Robot Vision and Sensory Controls
David P. Casasent; Ernest L. Hall, Editor(s)

© SPIE. Terms of Use
Back to Top