Share Email Print

Proceedings Paper

Effect Of Laser Hardening On Microstructure And Wear Resistance In Medium. Carbon/Chromium Steels
Author(s): Jan Kusinski; Gareth Thomas
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Metallographical (optical, TEM, SEM), spectroscopic, abrasive wear resistance and microhardness investiga-tions of Fe/Cr/Mn/C steels heat-treated by a continuous CO2 laser are described. Laser hardening resulted in wear resistance of 1.4 - 1.6 times better than that of conventionally hardened steels. Laser melting followed by rapid solidification allows formation of a solidified layer with high wear resistance only when the scanning velocity and mass of the samples were sufficient to realize high cooling rates. The variations in the wear resistance and microhardness with distance from the heated surface were similar. The grain refinement caused by rapid laser-heating and high stresses induced during cooling create essentially fine, highly dislocated lath and internally twinned martensites with some amount of stable, interlath retained austenite. This structure has in turn beneficial effects on wear resistance, and toughness. Laser-heat treatment for deep melting of the surface layers of the steels shows only a small improvement in wear resistance. Such heat-treatment results in delta ferrite retention (10Cr steel) and chromium segregation to cell-boundaries.

Paper Details

Date Published: 12 November 1986
PDF: 8 pages
Proc. SPIE 0668, Laser Processing: Fundamentals, Applications, and Systems Engineering, (12 November 1986); doi: 10.1117/12.938896
Show Author Affiliations
Jan Kusinski, University of Mining and Metallurgy (Poland)
Gareth Thomas, University of California (United States)

Published in SPIE Proceedings Vol. 0668:
Laser Processing: Fundamentals, Applications, and Systems Engineering
Walter W. Duley; Robert W. Weeks, Editor(s)

© SPIE. Terms of Use
Back to Top