Share Email Print
cover

Proceedings Paper

How To Design Frequency Stable TEA CO2 Lasers
Author(s): David V Willetts
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Most applications of TEA CO2 lasers in heterodyne laser radars require that the transmitter have a high degree of frequency stability. This ensures good Doppler resolution and maximises receiver sensitivity. However the environment within the device is far from benign with fast acoustic and electrical transients being present. Consequently the phenomena which govern the frequency stability of pulsed lasers are quite different from those operative in their cw counterparts. This review concentrates on the mechanisms of chirping within the output pulse; pulse to pulse frequency drift may be eliminated by frequency measurement and correction on successive pulses. Experimental evidence for laser-induced, plasma, acoustic, and anomalous dispersive effects is examined, and it is demonstrated that normally only the first two effects are of any significance. It emerges that good stability hinges on correct cavity design. The energy-dependent laser-induced frequency sweep falls dramatically as mode diameter is increased. Thus it is necessary to construct resonators with good selectivity for single mode operation while having a large spot size. Various approaches to this requirement are described including recently developed novel techniques. Finally the future for compact frequency-stable devices is investigated.

Paper Details

Date Published: 6 October 1986
PDF: 4 pages
Proc. SPIE 0663, Laser Radar Technology and Applications I, (6 October 1986); doi: 10.1117/12.938665
Show Author Affiliations
David V Willetts, Royal Signals and Radar Establishment (United States)


Published in SPIE Proceedings Vol. 0663:
Laser Radar Technology and Applications I
James M. Cruickshank; Robert C. Harney, Editor(s)

© SPIE. Terms of Use
Back to Top