Share Email Print
cover

Proceedings Paper

Spectroscopic And Electrochemical Studies Of Electrochromic Hydrated Nickel Oxide Films
Author(s): P C Yu; G Nazri; C M Lampert
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The electrochrcrnic properties of hydrated nickel oxide thin films electrochemically deposited by anodization onto doped tin oxide-coated glass have been studied by transmittance measurements, cyclic voltammetry, Fourier-transform infrared spectroscopy, and ion-backscattering spectrometry. The spectral transmittance is reported for films switched in both the bleached and colored states. The photopic transmittance (Tp) can be switched from T (bleached) = 0.77 to T (colored) = 0.21, and the solar transmittance (Ts) can be switched from Ts(bleached) = 0.73 to TS (colored) = 0.35. Also reported is the near-infrared transmittance (TNIR)which was found to switch fran T N,IR (bleached) = 0.72 to TNIR (colored) = 0.55. The bleached condition is noted to have very low solar absorption in both the visible and solar regions. Ion-backscattering spectrometry was performed on the hydrated nickel oxide film, yielding a camposition of Ni01.0 (dehydrated) and a film thickness of 125 A. Cyclic voltammetry showed that, for films in the bleached or colored state, the reversible reaction is Ni(0H), = NiOOH + H+ + e . Voltammnetry also showed that the switching of the film is controlled by the diffusion or protons, where OH plays a role in the reaction mechanism. Analysis of the hydrated nickel-oxide thin films by Fourier-transform infrared spectroscopy revealed that both the bleached and colored states contain lattice water and hydroxyl groups. The surface hydroxyl groups play an important role in the coloration and bleaching of the anodically deposited nickel oxide thin films.

Paper Details

Date Published: 24 September 1986
PDF: 9 pages
Proc. SPIE 0653, Optical Materials Technology for Energy Efficiency and Solar Energy Conversion V, (24 September 1986); doi: 10.1117/12.938303
Show Author Affiliations
P C Yu, University of California (United States)
G Nazri, General Motors Research Labs (United States)
C M Lampert, University of California (United States)


Published in SPIE Proceedings Vol. 0653:
Optical Materials Technology for Energy Efficiency and Solar Energy Conversion V
Claes-Goeran Granqvist; Carl M. Lampert; John J. Mason; Volker Wittwer, Editor(s)

© SPIE. Terms of Use
Back to Top