Share Email Print

Proceedings Paper

Real-Time Synthetic Aperture Radar Data Processing For Space Applications
Author(s): Wayne E. Arens
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The spacecraft synthetic aperture radar (SAR) data processing functions required to produce real-time imagery can be accomplished by time domain correlation in the range and azimuth dimensions. Charge-coupled device (CCD) large-scale integration (LSI) technology may be used to implement range and azimuth correlators that are practical for future on-board applications. An already demonstrated N-stage CCD LSI transversal filter chip, providing N signal-by-weighting coefficient multiplications each clock period, offers a poten-tially attractive basis for achieving the range correlation function. Furthermore, a custom CCD LSI azimuth filter chip, currently under development by the Caltech Jet Propulsion Laboratory (JPL), provides a potentially practical means for individually performing all of the necessary parametric corrections and correlation functions to produce complete image lines from range correlated data. By using M such azimuth filter chips in parallel, corres-ponding to the number of pulses coherently integrated in azimuth, a real-time processing capability can be achieved. This paper describes (1) applicable SAR processing principles, (2) typical requirements associated with real-time SAR processing, and (3) a real-time on-board SAR processing implementation approach using the aforementioned CCD techniques for achieving the range and azimuth correlation functions.

Paper Details

Date Published: 8 December 1978
PDF: 8 pages
Proc. SPIE 0154, Real-Time Signal Processing I, (8 December 1978); doi: 10.1117/12.938234
Show Author Affiliations
Wayne E. Arens, California Institute of Technology (United States)

Published in SPIE Proceedings Vol. 0154:
Real-Time Signal Processing I
T. F. Tao, Editor(s)

© SPIE. Terms of Use
Back to Top