Share Email Print

Proceedings Paper

A System For Load Isolation And Precision Pointing
Author(s): Claude R. Keckler; Brian J. Hamilton
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A system capable of satisfying the accuracy and stability requirements dictated by Shuttle-borne payloads utilizing large optics has been under joint NASA/Sperry development. This device, denoted the Annular Suspension and Pointing System, employs a unique combination of conventional gimbals and magnetic bearing actuators, thereby providing for the "complete" isolation of the payload from its external environment, as well as for extremely accurate and stable pointing (≈0.01 arcseconds). This effort has been pursued through the fabrication and laboratory evaluation of engineering model hardware. Results from these tests have been instrumental in generating high fidelity computer simulations of this load isolation and precision pointing system, and in permitting confident predictions of the system's on-orbit performance. Applicability of this system to the Solar Optical Telescope mission has been examined using the computer simulation. The worst case pointing error predicted for this payload while subjected to vernier reaction control system thruster firings and crew motions aboard Shuttle was approximately 0.006 arcseconds.

Paper Details

Date Published: 3 November 1983
PDF: 6 pages
Proc. SPIE 0444, Advanced Technology Optical Telescopes II, (3 November 1983); doi: 10.1117/12.937969
Show Author Affiliations
Claude R. Keckler, NASA Langley Research Center (United States)
Brian J. Hamilton, Sperry Flight Systems (United States)

Published in SPIE Proceedings Vol. 0444:
Advanced Technology Optical Telescopes II
Lawrence D. Barr; Brian Mack, Editor(s)

© SPIE. Terms of Use
Back to Top