Share Email Print
cover

Proceedings Paper

Video Data Link Provides Television Pictures In Near Real Time Via Tactical Radio And Satellite Channels
Author(s): Richard V. Hartman
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Advances in sophisticated algorithms and parallel VLSI processing have resulted in the capability for near real-time transmission of television pictures (optical and FLIR) via existing telephone lines, tactical radios, and military satellite channels. Concepts have been field demonstrated with production ready engineering development models using transform compression techniques. Preliminary design has been completed for packaging an existing command post version into a 20 pound 1/2 ATR enclosure for use on jeeps, backpacks, RPVs, helicopters, and reconnaissance aircraft. The system will also have a built-in error correction code 2 (ECC) unit, allowing operation via communicatons media exhibiting a bit error rate of 1 X 10-or better. In the past several years, two nearly simultaneous developments show promise of allowing the breakthrough needed to give the operational commander a practical means for obtaining pictorial information from the battlefield. And, he can obtain this information in near real time using available communications channels--his long sought after pictorial force multiplier: • High speed digital integrated circuitry that is affordable, and • An understanding of the practical applications of information theory. High speed digital integrated circuits allow an analog television picture to be nearly instantaneously converted to a digital serial bit stream so that it can be transmitted as rapidly or slowly as desired, depending on the available transmission channel bandwidth. Perhaps more importantly, digitizing the picture allows it to be stored and processed in a number of ways. Most typically, processing is performed to reduce the amount of data that must be transmitted, while still maintaining maximum picture quality. Reducing the amount of data that must be transmitted is important since it allows a narrower bandwidth in the scarce frequency spectrum to be used for transmission of pictures, or if only a narrow bandwidth is available, it takes less time for the picture to be transmitted. This process of reducing the amount of data that must be transmitted to represent a picture is called compression, truncation, or most typically, video compression. Keep in mind that the pictures you see on your home TV are nothing more than a series of still pictures displayed at a rate of 30 frames per second. If you grabbed one of those frames, digitized it, stored it in memory, and then transmitted it at the most rapid rate the bandwidth of your communications channel would allow, you would be using the so-called slow scan techniques.

Paper Details

Date Published: 20 February 1987
PDF: 7 pages
Proc. SPIE 0694, Airborne Reconnaissance X, (20 February 1987); doi: 10.1117/12.936759
Show Author Affiliations
Richard V. Hartman, Singer Company (United States)


Published in SPIE Proceedings Vol. 0694:
Airborne Reconnaissance X
Paul A. Henkel; Francis R. LaGesse, Editor(s)

© SPIE. Terms of Use
Back to Top