Share Email Print
cover

Proceedings Paper

The BAMM IIA Radiometer
Author(s): R. T. Pohlman
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The Balloon Altitude Mosaic Measurement (BAMM) IIA Radiometer is designed to make mosaic measurements in either of two modes of operation: the stare or demonstration mode and the radiometer mode. In the stare mode, background suppression and target detection can be demonstrated; in the radiometer mode the incoming energy is chopped to allow absolute measurements to be made. The Noise Equivalent Radiance (NER) in each available spectral band is less than 2.5E-8 W/cm2-sr in the stare mode and less than 1.25E-7 W/cm2-sr in the radiometer mode. The Radiometer is physically divided into two units: the Radiometer Unit and the Support Electronics Unit. The Radiometer Unit contains the optical, detection, and preprocessor sections of the instrument. Ten narrow-band spectral filters in the 2.59 to 5.1 micrometer region are mounted on a wheel and are selectable from the ground. Three telescopes on a turret allow the selection of 50, 200, or 800 meter detector footprints (at the nadir from the 100,000 ft. flight altitude). The focal plane module uses the Grumman-developed Z-dimension technology with 16 x 64 HgCdTe detectors. Included on the module are hybrid CMOS chips containing the signal conditioning circuitry for sample and hold operations, bandpass filtering, and 32:1 signal multiplexing. The second unit, the Support Electronics, supplies control signals, bias voltages, and clock signals. The output lines from the focal plane are converted to digital signals, multiplexed, and formatted for PCM trans-mission to the ground in this unit.

Paper Details

Date Published: 19 January 1984
PDF: 8 pages
Proc. SPIE 0430, Infrared Technology IX, (19 January 1984); doi: 10.1117/12.936371
Show Author Affiliations
R. T. Pohlman, Grumman Aerospace Corporation (United States)


Published in SPIE Proceedings Vol. 0430:
Infrared Technology IX
Richard A. Mollicone; Irving J. Spiro, Editor(s)

© SPIE. Terms of Use
Back to Top