Share Email Print
cover

Proceedings Paper

Remote Operation Of Telescopes: Long-Distance Observing
Author(s): Holland C. Ford
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Communication technology makes it possible to extend the link between the telescope and control room from tens of feet to thousands of miles. Reasons for doing so include: 1) avoiding the health risks and observing inefficiencies caused by hypoxia at high-altitude sites; 2) facilitation of new telescope scheduling schemes; 3) saving travel time and money; and 4) providing troubleshooting backup by the headquarters' engineers and astronomers. The required data rate is estimated by assuming that: 1) the data from a mosaic of nine 1000 x 1000 CCDs will be transmitted every ten (10) minutes; 2) troubleshooting will be supported by transmitting television pictures at a few frames per second. With these assumptions a 500-Kbs data rate is needed to accommodate peak data rates and to have adequate catch-up capability. A two-step implementation of remote observing at Mauna Kea is considered in detail. The first step is installation of a microwave link or glass fiber land line between Mauna Kea's summit and Waimea. The second step is to connect the island headquarters at Waimea to a mainland headquarters, or each U.C. campus, with a satellite link. Cost estimates are given for each step.

Paper Details

Date Published: 4 November 1982
PDF: 9 pages
Proc. SPIE 0332, Advanced Technology Optical Telescopes I, (4 November 1982); doi: 10.1117/12.933526
Show Author Affiliations
Holland C. Ford, University of California (United States)


Published in SPIE Proceedings Vol. 0332:
Advanced Technology Optical Telescopes I
Lawrence D. Barr; Geoffrey Burbidge, Editor(s)

© SPIE. Terms of Use
Back to Top