Share Email Print

Proceedings Paper

Spin-orbit coupling in graphene structures
Author(s): Denis Kochan; Martin Gmitra; Jaroslav Fabian
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The electronic band structure of graphene monolayer and bilayer in the presence of spin-orbit coupling and transverse electric field is analyzed emphasizing the roles of three complementary approaches: first-principles calculations, symmetry arguments and tight-binding approximation. In the case of graphene monolayer, the intrinsic spin-orbit coupling opens a gap of 24 µeV at the K(K´)-point. The dominant physical mechanism governing the intrinsic spin-orbit interaction originates from d and higher carbon orbitals. The transverse electric field induces an additional extrinsic (Bychkov-Rashba-type) splitting of typical value 10 µeV per V/nm. In the case of graphene bilayer; the intrinsic spin-orbit coupling splits the band structure near the K(K´)-point by 24 µeV. This splitting concerns the low-energy valence and conduction bands (two bands closest to the Fermi level). It is similar to graphene monolayer and is also attributed to d orbitals. An applied transverse electric field leaves the low-energy bands split by 24 µeV independently of the applied field, this is the interesting and peculiar feature of the bilayer graphene. The electric field, instead, opens a semiconducting band gap separating these low-energy bands. The remaining two high-energy bands are directly at K(K´)-point spin-split in proportion to the electric field; the proportionality coefficient is given by value 20 µeV. Effective tight-binding and spin-orbit hamiltonians describing graphene mono-and bi-layer near K point are derived from symmetry principles.

Paper Details

Date Published: 9 October 2012
PDF: 12 pages
Proc. SPIE 8461, Spintronics V, 84610L (9 October 2012); doi: 10.1117/12.930947
Show Author Affiliations
Denis Kochan, Univ. Regensburg (Germany)
Martin Gmitra, Univ. Regensburg (Germany)
Jaroslav Fabian, Univ. Regensburg (Germany)

Published in SPIE Proceedings Vol. 8461:
Spintronics V
Henri-Jean Drouhin; Jean-Eric Wegrowe; Manijeh Razeghi, Editor(s)

© SPIE. Terms of Use
Back to Top