Share Email Print
cover

Proceedings Paper

Counterintuitive MCNPX results for scintillator surface roughness effect
Author(s): Ding Yuan; Paul Guss
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We performed a number of comparative MCNPX simulations of gamma energy depositions of scintillation crystals with smooth and rough surfaces. In the study, nine surface patterns (8 micro-roughness + 1 smooth) were coupled with eight common scintillation crystals for a total of 72 possible combinations. Although this was a preliminary study, the outcome was counterintuitive; results generally favored surfaces with micro-roughness over a conventional smooth surface as measured in terms of average energy depositions. The advantage gained through surface roughness is less significant for CdSe and LaCl3, but is most significant for the common NaI and the glass-like SiO2 scintillators. Based on the results of the 64 rough-surface coupled MCNPX simulations, 57 of the 64 (~89%) simulations showed some improvement in energy deposition. The mean improvement in energy deposition was 2.52%. The maximum improvement was about 8.75%, which was achieved when roughening the surface of a SiO2 scintillator using a micro cutting pattern. Further, for a conventional NaI scintillator, MCNPX results suggest that any roughness pattern would improve the energy deposition, with an average improvement of 3.83%. Although the likely causes remain unclear, we intend to focus on presenting simulation results instead of offering a sound explanation of the underlying physics.

Paper Details

Date Published: 19 October 2012
PDF: 10 pages
Proc. SPIE 8509, Penetrating Radiation Systems and Applications XIII, 85090E (19 October 2012); doi: 10.1117/12.928850
Show Author Affiliations
Ding Yuan, National Security Technologies, LLC (United States)
Paul Guss, Remote Sensing Lab., National Security Technologies, LLC (United States)


Published in SPIE Proceedings Vol. 8509:
Penetrating Radiation Systems and Applications XIII
Gary P. Grim; H. Bradford Barber, Editor(s)

© SPIE. Terms of Use
Back to Top