Share Email Print

Proceedings Paper

Reversible photodegradation through chromophore-polymer interactions in disperse orange 11 dye-doped PMMA thin films
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We study the role of polymer-chromophore and chromophore-chromophore interactions in reversible photodegradation of Disperse Orange 11 dye-doped thin films using temperature dependent studies of amplified spontaneous emission for several dye concentrations. The temperature dependence of the process determines both the ground state energies of the species involved and the role of the polymer; and, the concentration dependence gives information about the role of dye-dye interactions. We find that the material is more resistant to photo-damage at higher dye concentrations. This data is used to validate a new model of the process.

Paper Details

Date Published: 15 October 2012
PDF: 8 pages
Proc. SPIE 8519, Nanophotonics and Macrophotonics for Space Environments VI, 85190G (15 October 2012); doi: 10.1117/12.928676
Show Author Affiliations
Shiva K. Ramini, Washington State Univ. (United States)
Mark G. Kuzyk, Washington State Univ. (United States)

Published in SPIE Proceedings Vol. 8519:
Nanophotonics and Macrophotonics for Space Environments VI
Edward W. Taylor; David A. Cardimona; Javier Pérez-Moreno; Nathan J. Dawson, Editor(s)

© SPIE. Terms of Use
Back to Top