Share Email Print
cover

Proceedings Paper

New simulation and measurement results on gateable DEPFET devices
Author(s): Alexander Bähr; Stefan Aschauer; Katrin Hermenau; Sven Herrmann; Peter H. Lechner; Gerhard Lutz; Petra Majewski; Danilo Miessner; Matteo Porro; Rainer H. Richter; Gerhard Schaller; Christian Sandow; Martina Schnecke; Florian Schopper; Alexander Stefanescu; Lothar Strüder; Johannes Treis
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

To improve the signal to noise level, devices for optical and x-ray astronomy use techniques to suppress background events. Well known examples are e.g. shutters or frame-store Charge Coupled Devices (CCDs). Based on the DEpleted P-channel Field Effect Transistor (DEPFET) principle a so-called Gatebale DEPFET detector can be built. Those devices combine the DEPFET principle with a fast built-in electronic shutter usable for optical and x-ray applications. The DEPFET itself is the basic cell of an active pixel sensor build on a fully depleted bulk. It combines internal amplification, readout on demand, analog storage of the signal charge and a low readout noise with full sensitivity over the whole bulk thickness. A Gatebale DEPFET has all these benefits and obviates the need for an external shutter. Two concepts of Gatebale DEPFET layouts providing a built-in shutter will be introduced. Furthermore proof of principle measurements for both concepts are presented. Using recently produced prototypes a shielding of the collection anode up to 1 • 10−4 was achieved. Predicted by simulations, an optimized geometry should result in values of 1 • 10−5 and better. With the switching electronic currently in use a timing evaluation of the shutter opening and closing resulted in rise and fall times of 100ns.

Paper Details

Date Published: 25 September 2012
PDF: 13 pages
Proc. SPIE 8453, High Energy, Optical, and Infrared Detectors for Astronomy V, 84530N (25 September 2012); doi: 10.1117/12.926099
Show Author Affiliations
Alexander Bähr, Max-Planck-Institut für extraterrestrische Physik (Germany)
Max-Planck-Institut Halbleiterlabor (Germany)
Stefan Aschauer, PNSensor GmbH (Germany)
Katrin Hermenau, PNSensor GmbH (Germany)
Sven Herrmann, Max-Planck-Institut für extraterrestrische Physik (Germany)
Max-Planck-Institut Halbleiterlabor (Germany)
Peter H. Lechner, PNSensor GmbH (Germany)
Gerhard Lutz, PNSensor GmbH (Germany)
Petra Majewski, PNSensor GmbH (Germany)
Danilo Miessner, Max-Planck-Institut für extraterrestrische Physik (Germany)
Max-Planck-Institut Halbleiterlabor (Germany)
Matteo Porro, Max-Planck-Institut für extraterrestrische Physik (Germany)
Max-Planck-Institut Halbleiterlabor (Germany)
Rainer H. Richter, Max-Planck-Institut Halbleiterlabor (Germany)
Max-Planck-Institut für Physik (Germany)
Gerhard Schaller, Max-Planck-Institut für extraterrestrische Physik (Germany)
Max-Planck-Institut Halbleiterlabor (Germany)
Christian Sandow, PNSensor GmbH (Germany)
Martina Schnecke, Max-Planck-Institut Halbleiterlabor (Germany)
Max-Planck-Institut für Physik (Germany)
Florian Schopper, Max-Planck-Institut für extraterrestrische Physik (Germany)
Max-Planck-Institut Halbleiterlabor (Germany)
Alexander Stefanescu, Max-Planck-Institut für extraterrestrische Physik (Germany)
Max-Planck-Institut Halbleiterlabor (Germany)
Lothar Strüder, Max-Planck-Institut für extraterrestrische Physik (Germany)
Max-Planck-Institut Halbleiterlabor (Germany)
Johannes Treis, PNSensor GmbH (Germany)


Published in SPIE Proceedings Vol. 8453:
High Energy, Optical, and Infrared Detectors for Astronomy V
Andrew D. Holland; James W. Beletic, Editor(s)

© SPIE. Terms of Use
Back to Top