Share Email Print
cover

Proceedings Paper

Wavefront sensing for WFIRST with a linear optical model
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

In this paper we develop methods to use a linear optical model to capture the field dependence of wavefront aberrations in a nonlinear optimization-based phase retrieval algorithm for image-based wavefront sensing. The linear optical model is generated from a ray trace model of the system and allows the system state to be described in terms of mechanical alignment parameters rather than wavefront coefficients. This approach allows joint optimization over images taken at different field points and does not require separate convergence of phase retrieval at individual field points. Because the algorithm exploits field diversity, multiple defocused images per field point are not required for robustness. Furthermore, because it is possible to simultaneously fit images of many stars over the field, it is not necessary to use a fixed defocus to achieve adequate signal-to-noise ratio despite having images with high dynamic range. This allows high performance wavefront sensing using in-focus science data. We applied this technique in a simulation model based on the Wide Field Infrared Survey Telescope (WFIRST) Intermediate Design Reference Mission (IDRM) imager using a linear optical model with 25 field points. We demonstrate sub-thousandth-wave wavefront sensing accuracy in the presence of noise and moderate undersampling for both monochromatic and polychromatic images using 25 high-SNR target stars. Using these high-quality wavefront sensing results, we are able to generate upsampled point-spread functions (PSFs) and use them to determine PSF ellipticity to high accuracy in order to reduce the systematic impact of aberrations on the accuracy of galactic ellipticity determination for weak-lensing science.

Paper Details

Date Published: 21 September 2012
PDF: 8 pages
Proc. SPIE 8442, Space Telescopes and Instrumentation 2012: Optical, Infrared, and Millimeter Wave, 844210 (21 September 2012); doi: 10.1117/12.925089
Show Author Affiliations
Alden S. Jurling, NASA Goddard Space Flight Ctr. (United States)
Institute of Optics, Univ. of Rochester (United States)
David A. Content, NASA Goddard Space Flight Ctr. (United States)


Published in SPIE Proceedings Vol. 8442:
Space Telescopes and Instrumentation 2012: Optical, Infrared, and Millimeter Wave
Mark C. Clampin; Giovanni G. Fazio; Howard A. MacEwen; Jacobus M. Oschmann, Editor(s)

© SPIE. Terms of Use
Back to Top