Share Email Print
cover

Proceedings Paper

Space borne intensity interferometry via spacecraft formation flight
Author(s): Erez N. Ribak; Pini Gurfil; Coral Moreno
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Interferometry in space has marked advantages: long integration times and observation in spectral bands where the atmosphere is opaque. When installed on separate spacecraft, it also has extended and flexible baselines for better filling of the uv plane. Intensity interferometry has an additional advantage, being insensitive to telescope and path errors, but is unfortunately much less light-sensitive. In planning towards such a mission, we are experimenting with some fundamental research issues. Towards this end, we constructed a system of three vehicles floating on an air table in formation flight, with an autonomous orbit control. Each such device holds its own light collector, detector, and transmitter, to broadcast its intensity signal towards a central receiving station. At this station we implement parallel radio receivers, analogue to digital converters, and a digital three-way correlator. Current technology limits us to ~1GHz transmission frequency, which corresponds to a comfortable 0.3m accuracy in light-bucket shape and in its relative position. Naïve calculations place our limiting magnitude at ~7 in the blue and ultraviolet, where amplitude interferometers are limited. The correlation signal rides on top of this huge signal with its own Poisson noise, requiring a very large dynamic range, which needs to be transmitted in full. We are looking at open questions such as deployable optical collectors and radio antennae of similar size of a few meters, and how they might influence our data transmission and thus set our flux limit.

Paper Details

Date Published: 12 September 2012
PDF: 6 pages
Proc. SPIE 8445, Optical and Infrared Interferometry III, 844509 (12 September 2012); doi: 10.1117/12.924998
Show Author Affiliations
Erez N. Ribak, Technion - Israel Institute of Technology (Israel)
Pini Gurfil, Technion - Israel Institute of Technology (Israel)
Coral Moreno, Technion - Israel Institute of Technology (Israel)


Published in SPIE Proceedings Vol. 8445:
Optical and Infrared Interferometry III
Françoise Delplancke; Jayadev K. Rajagopal; Fabien Malbet, Editor(s)

© SPIE. Terms of Use
Back to Top