Share Email Print
cover

Proceedings Paper

Carrier and aberrations removal in interferometric fringe projection profilometry
Author(s): P. Blain; F. Michel; Y. Renotte; S. Habraken
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A profilometer which takes advantage of polarization states splitting technique and monochromatic light projection method as a way to overcome ambient lighting for in-situ measurement is under development [1, 2]. Because of the Savart plate which refracts two out of axis beams, the device suffers from aberrations (mostly coma and astigmatism). These aberrations affect the quality of the sinusoidal fringe pattern. In fringe projection profilometry, the unwrapped phase distribution map contains the sum of the object's shape-related phase and carrier-fringe-related phase. In order to extract the 3D shape of the object, the carrier phase has to be removed [3, 4]. An easy way to remove both the fringe carrier and the aberrations of the optical system is to measure the phases of the test object and to measure the phase of a reference plane with the same set up and to subtract both phase maps. This time consuming technique is suitable for laboratory but not for industry. We propose a method to numerically remove both the fringe carrier and the aberrations. A first reference phase of a calibration plane is evaluated knowing the position of the different elements in the set up and the orientation of the fringes. Then a fitting of the phase map by Zernike polynomials is computed [5]. As the triangulation parameters are known during the calibration, the computation of Zernike coefficients has only to be made once. The wavefront error can be adjusted by a scale factor which depends on the position of the test object.

Paper Details

Date Published: 27 April 2012
PDF: 10 pages
Proc. SPIE 8430, Optical Micro- and Nanometrology IV, 84300O (27 April 2012); doi: 10.1117/12.922533
Show Author Affiliations
P. Blain, Univ. de Liège (Belgium)
F. Michel, Univ. de Liège (Belgium)
Y. Renotte, Univ. de Liège (Belgium)
S. Habraken, Univ. de Liège (Belgium)


Published in SPIE Proceedings Vol. 8430:
Optical Micro- and Nanometrology IV
Christophe Gorecki; Anand K. Asundi; Wolfgang Osten, Editor(s)

© SPIE. Terms of Use
Back to Top