Share Email Print
cover

Proceedings Paper

Lithium niobate-on-insulator (LNOI): status and perspectives
Author(s): Hui Hu; Jin Yang; Li Gui; Wolfgang Sohler
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

As optical components continue to replace electronics in ultrafast signal processing applications, a growing interest in further miniaturization and integration of photonic devices on a single chip is observed. Therefore, optical waveguides of high refractive index contrast of core and cladding materials are developed since a couple of years. They can have a very small cross section and also bending radius, enabling the development of ultra-compact photonic integrated devices and circuits. Silicon-On-Insulator (SOI) waveguides ("photonic wires") and devices are the most prominent examples. A corresponding technology for Lithium Niobate-On-Insulator (LNOI) waveguides is still in its infancy, though LN offers - in contrast to SOI - excellent electro-optic, acousto-optic, and nonlinear optical properties. Moreover, it can be easily doped with rare-earth ions to get a laser active material. Therefore, LNOI photonic wires will enable the development of a wide range of extremely compact, active integrated devices, including electro-optical modulators, tunable filters, nonlinear (periodically poled) wavelength converters, and amplifiers and lasers of different types. The state-of-the-art of LNOI films as platform for high-density integrated optics is reviewed. Using a full-wafer technology (3" diameter), sub-micrometer thin LN films are obtained by high-dose He+ ion implantations, crystal-bonding to a low-index substrate (preferably SiO2) and cleaving by a special annealing step ("ion-beam-slicing"). Various LNOI structures, also combined with metallic layers, are presented. Based on such platforms, photonic wires and micro-photonic devices are developed using different micro- and nano-structuring techniques. To be specific, the fabrication and characterization of LNOI photonic wires with cross-section < 1 μm2, and periodically poled LNOI photonic wires for second harmonic generation are reported in detail.

Paper Details

Date Published: 10 May 2012
PDF: 8 pages
Proc. SPIE 8431, Silicon Photonics and Photonic Integrated Circuits III, 84311D (10 May 2012); doi: 10.1117/12.922401
Show Author Affiliations
Hui Hu, Shandong Univ. (China)
Jin Yang, Shandong Univ. (China)
Li Gui, Univ. Paderborn (Germany)
Wolfgang Sohler, Univ. Paderborn (Germany)


Published in SPIE Proceedings Vol. 8431:
Silicon Photonics and Photonic Integrated Circuits III
Laurent Vivien; Seppo K. Honkanen; Lorenzo Pavesi; Stefano Pelli, Editor(s)

© SPIE. Terms of Use
Back to Top