Share Email Print
cover

Proceedings Paper

Fabrication of high quality optical coherence tomography (OCT) calibration artefacts using femtosecond inscription
Author(s): Graham C. B. Lee; Janarthanan Rasakanthan; Peter D. Woolliams; Kate Sugden
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Optical coherence tomography (OCT) is a non-invasive three-dimensional imaging system that is capable of producing high resolution in-vivo images. OCT is approved for use in clinical trials in Japan, USA and Europe. For OCT to be used effectively in a clinical diagnosis, a method of standardisation is required to assess the performance across different systems. This standardisation can be implemented using highly accurate and reproducible artefacts for calibration at both installation and throughout the lifetime of a system. Femtosecond lasers can write highly reproducible and highly localised micro-structured calibration artefacts within a transparent media. We report on the fabrication of high quality OCT calibration artefacts in fused silica using a femtosecond laser. The calibration artefacts were written in fused silica due to its high purity and ability to withstand high energy femtosecond pulses. An Amplitude Systemes s-Pulse Yb:YAG femtosecond laser with an operating wavelength of 1026 nm was used to inscribe three dimensional patterns within the highly optically transmissive substrate. Four unique artefacts have been designed to measure a wide variety of parameters, including the points spread function (PSF), modulation transfer function (MTF), sensitivity, distortion and resolution - key parameters which define the performance of the OCT. The calibration artefacts have been characterised using an optical microscope and tested on a swept source OCT. The results demonstrate that the femtosecond laser inscribed artefacts have the potential of quantitatively and qualitatively validating the performance of any OCT system.

Paper Details

Date Published: 8 May 2012
PDF: 9 pages
Proc. SPIE 8427, Biophotonics: Photonic Solutions for Better Health Care III, 84271K (8 May 2012); doi: 10.1117/12.922348
Show Author Affiliations
Graham C. B. Lee, Aston Univ. (United Kingdom)
Janarthanan Rasakanthan, Aston Univ. (United Kingdom)
Peter D. Woolliams, National Physical Lab. (United Kingdom)
Kate Sugden, Aston Univ. (United Kingdom)


Published in SPIE Proceedings Vol. 8427:
Biophotonics: Photonic Solutions for Better Health Care III
Jürgen Popp; Wolfgang Drexler; Valery V. Tuchin; Dennis L. Matthews, Editor(s)

© SPIE. Terms of Use
Back to Top