Share Email Print
cover

Proceedings Paper

Optically-induced switching between mode-locked and unmode-locked continuous wave regimes of a femtosecond Cr4+:forsterite laser
Author(s): D. A. Walsh; C. E. Crombie; W. Sibbett; C. T. A. Brown; V. G. Savitski; D. Burns; S. Calvez
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The ability to control the temporal output from a femtosecond laser can enable the same laser to be used for multiple functions, for example, the laser used in an optical tweezers system could be used as a constant-intensity source to trap a biological cell and then be temporarily switched to mode-locked operation to effect photoporation. Here, we report the rapid switching of a Cr4+:forsterite laser between mode-locked and unmode-locked continuous wave (CW) regimes via the optical pumping of an intracavity SESAM element. Mode-locking of the laser was initiated by an intracavity quantum well (GaInAsN) SESAM having an anti-resonant design (ΔR~0.3%, λPL~1310nm) that yielded transform-limited 89fs pulses centered around 1296nm with a repetition rate of 162MHz at an average power of 64mW. Upon excitation of the SESAM with 600mW of extra-cavity power from an 808nm semiconductor diode laser, switching could be induced between the unmode-locked and mode-locked regimes. Transitions free of Q-switching or relaxation oscillations were observed with <200μs switching times for both for the initiation and cessation of mode-locking. Periods of mode-locked operation of custom duration could be produced by appropriate control of the SESAM pump diode enabling the generation of bursts of pulses as short as 400μs. Switching was confirmed to originate from local pump-induced heating of the SESAM by observing the laser going through identical regime switching when the chip temperature of the 'unpumped' SESAM was raised by ~20°C.

Paper Details

Date Published: 15 May 2012
PDF: 10 pages
Proc. SPIE 8433, Laser Sources and Applications, 84330G (15 May 2012); doi: 10.1117/12.922340
Show Author Affiliations
D. A. Walsh, Univ. of St. Andrews (United Kingdom)
C. E. Crombie, Univ. of St. Andrews (United Kingdom)
W. Sibbett, Univ. of St. Andrews (United Kingdom)
C. T. A. Brown, Univ. of St. Andrews (United Kingdom)
V. G. Savitski, Univ. of Strathclyde (United Kingdom)
D. Burns, Univ. of Strathclyde (United Kingdom)
S. Calvez, Univ. of Strathclyde (United Kingdom)


Published in SPIE Proceedings Vol. 8433:
Laser Sources and Applications
Thomas Graf; Jacob I. Mackenzie; Helena Jelínková; John Powell, Editor(s)

© SPIE. Terms of Use
Back to Top