Share Email Print
cover

Proceedings Paper

Plasmonic device using backscattering of light for enhanced gas and vapour sensing
Author(s): Michaël Lobet; Olivier Deparis
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Based on recent experimental and theoretical results obtained with gold-glass nanocomposite films, we propose a plasmonic device which uses the backscattering of light in order to make a highly sensitive gas/vapour sensor. The backscattered reflectance is used as the sensing signal since it has been shown, under certain conditions, that this component of the diffracted light is much more sensitive to a change of refractive index in the surrounding medium than the specular component. In addition, the backscattering presents an azimuthal angular dependency which is viewed as an advantage for practical implementation. The device consists of three planar layers. First, a glass substrate acting as incidence medium. Then a dielectric layer with a reduced refractive index with respect to the substrate is added which acts as a leaky-waveguide in order to maximize light coupling into the third sensing layer. The third layer is composed of gold nanopillars embedded in a dielectric matrix. Through numerical simulations, 2D periodic square and hexagonal arrays of gold nanopillars are compared in order to point out the influence of the nanocomposite arrangement in the photonic response. Moreover, disorder is introduced into these arrays in order to highlight the robustness of the sensing principle with respect to defects in the particle arrangement and size. For the purpose of gas/vapour sensing, we study the backscattered reflectance as it changes according to modifications in the dielectric environment at the external surface due to adsorption from gas or vapour. We determine the optimized device parameters and incidence angles.

Paper Details

Date Published: 25 April 2012
PDF: 11 pages
Proc. SPIE 8425, Photonic Crystal Materials and Devices X, 842509 (25 April 2012); doi: 10.1117/12.921870
Show Author Affiliations
Michaël Lobet, Facultés Univ. Notre-Dame de la Paix (Belgium)
Olivier Deparis, Facultés Univ. Notre-Dame de la Paix (Belgium)


Published in SPIE Proceedings Vol. 8425:
Photonic Crystal Materials and Devices X
Hernán Ruy Míguez; Sergei G. Romanov; Lucio Claudio Andreani; Christian Seassal, Editor(s)

© SPIE. Terms of Use
Back to Top