Share Email Print

Proceedings Paper

Radiance and atmosphere propagation-based method for the target range estimation
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Target range estimation is traditionally based on radar and active sonar systems in modern combat system. However, the performance of such active sensor devices is degraded tremendously by jamming signal from the enemy. This paper proposes a simple range estimation method between the target and the sensor. Passive IR sensors measures infrared (IR) light radiance radiating from objects in dierent wavelength and this method shows robustness against electromagnetic jamming. The measured target radiance of each wavelength at the IR sensor depends on the emissive properties of target material and is attenuated by various factors, in particular the distance between the sensor and the target and atmosphere environment. MODTRAN is a tool that models atmospheric propagation of electromagnetic radiation. Based on the result from MODTRAN and measured radiance, the target range is estimated. To statistically analyze the performance of proposed method, we use maximum likelihood estimation (MLE) and evaluate the Cramer-Rao Lower Bound (CRLB) via the probability density function of measured radiance. And we also compare CRLB and the variance of and ML estimation using Monte-Carlo.

Paper Details

Date Published: 18 May 2012
PDF: 8 pages
Proc. SPIE 8354, Thermosense: Thermal Infrared Applications XXXIV, 835413 (18 May 2012); doi: 10.1117/12.920882
Show Author Affiliations
Hoonkyung Cho, KAIST (Korea, Republic of)
Joohwan Chun, KAIST (Korea, Republic of)

Published in SPIE Proceedings Vol. 8354:
Thermosense: Thermal Infrared Applications XXXIV
Douglas Burleigh; Gregory R. Stockton, Editor(s)

© SPIE. Terms of Use
Back to Top