Share Email Print

Proceedings Paper

Detection of Bacillus spores within 15 minutes by surface-enhanced Raman spectroscopy
Author(s): Chetan Shende; Frank Inscore; Hermes Huang; Stuart Farquharson; Atanu Sengupta
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Since the distribution of Bacillus anthracis causing spores through the US Postal System, there has been a persistent fear that biological warfare agents (BWAs) will be used by terrorists against our military abroad and our civilians at home. Despite the substantial effort to develop BWA analyzers, they remain either too slow, produce high falsealarm rates, lack sensitivity, or cannot be fielded. Consequently there remains a need for a portable analyzer that can overcome these limitations as expressed at the 2011 Biological Weapons Convention. To meet this need we have been developing a sample system that selectively binds BWAs and produce surface-enhanced Raman (SER) spectra using portable Raman spectrometers. Here we describe the use of a short peptide ligand functionalized on silver nanoparticles to selectively capture Bacillus cereus spores (a surrogate of B. anthracis) and their subsequent detection by SER spectroscopy. This technique was used to specifically detect B. cereus spores over closely related species like B. subtilis belonging to the same genus within 15 minutes. Sensitivity of the method was demonstrated by detecting 104 B. cereus spores/mL of water. The technology, once developed should prove invaluable for rapid monitoring of BWAs, which will immensely help first responders and emergency personnel in implementing appropriate counter measures.

Paper Details

Date Published: 4 May 2012
PDF: 8 pages
Proc. SPIE 8358, Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XIII, 83580G (4 May 2012); doi: 10.1117/12.920854
Show Author Affiliations
Chetan Shende, Real-Time Analyzers, Inc. (United States)
Frank Inscore, Real-Time Analyzers, Inc. (United States)
Hermes Huang, Real-Time Analyzers, Inc. (United States)
Stuart Farquharson, Real-Time Analyzers, Inc. (United States)
Atanu Sengupta, Real-Time Analyzers, Inc. (United States)

Published in SPIE Proceedings Vol. 8358:
Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XIII
Augustus Way Fountain, Editor(s)

© SPIE. Terms of Use
Back to Top