Share Email Print

Proceedings Paper

Gallium nitride micromechanical resonators for IR detection
Author(s): Mina Rais-Zadeh
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This paper reports on a novel technology for low-noise un-cooled detection of infrared (IR) radiation using a combination of piezoelectric, pyroelectric, electrostrictive, and resonant effects. The architecture consists of a parallel array of high-Q gallium nitride (GaN) micro-mechanical resonators coated with an IR absorbing nanocomposite. The nanocomposite absorber converts the IR energy into heat with high efficiency. The generated heat causes a shift in frequency characteristics of the GaN resonators because of pyroelectric effect. IR detection is achieved by sensing the shift in the resonance frequency and amplitude of the exposed GaN resonator as compared to a reference resonator that is included in the array. This architecture offers improved signal to noise ratio compared with conventional pyroelectric detectors as the resonant effect reduces the background noise and improves sensitivity, enabling IR detection with NEDTs below 5 mK at room temperature. GaN is chosen as the resonant material as it possesses high pyroelectric, electrostrictive, and piezoelectric coefficients and can be grown on silicon substrates for low-cost batch fabrication. Measured results of a GaN IR detector prototype and a thin-film nanocomposite IR absorber are presented in this paper.

Paper Details

Date Published: 3 May 2012
PDF: 6 pages
Proc. SPIE 8373, Micro- and Nanotechnology Sensors, Systems, and Applications IV, 83731M (3 May 2012); doi: 10.1117/12.919941
Show Author Affiliations
Mina Rais-Zadeh, Univ. of Michigan (United States)

Published in SPIE Proceedings Vol. 8373:
Micro- and Nanotechnology Sensors, Systems, and Applications IV
Thomas George; M. Saif Islam; Achyut Dutta, Editor(s)

© SPIE. Terms of Use
Back to Top