Share Email Print

Proceedings Paper

Approximate dynamic programming recurrence relations for a hybrid optimal control problem
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This paper presents a hybrid approximate dynamic programming (ADP) method for a hybrid dynamic system (HDS) optimal control problem, that occurs in many complex unmanned systems which are implemented via a hybrid architecture, regarding robot modes or the complex environment. The HDS considered in this paper is characterized by a well-known three-layer hybrid framework, which includes a discrete event controller layer, a discrete-continuous interface layer, and a continuous state layer. The hybrid optimal control problem (HOCP) is to nd the optimal discrete event decisions and the optimal continuous controls subject to a deterministic minimization of a scalar function regarding the system state and control over time. Due to the uncertainty of environment and complexity of the HOCP, the cost-to-go cannot be evaluated before the HDS explores the entire system state space; as a result, the optimal control, neither continuous nor discrete, is not available ahead of time. Therefore, ADP is adopted to learn the optimal control while the HDS is exploring the environment, because of the online advantage of ADP method. Furthermore, ADP can break the curses of dimensionality which other optimizing methods, such as dynamic programming (DP) and Markov decision process (MDP), are facing due to the high dimensions of HOCP.

Paper Details

Date Published: 17 May 2012
PDF: 11 pages
Proc. SPIE 8387, Unmanned Systems Technology XIV, 83870C (17 May 2012); doi: 10.1117/12.919286
Show Author Affiliations
W. Lu, Duke Univ. (United States)
S. Ferrari, Duke Univ. (United States)
R. Fierro, The Univ. of New Mexico (United States)
T. A. Wettergren, Naval Undersea Warfare Ctr. (United States)

Published in SPIE Proceedings Vol. 8387:
Unmanned Systems Technology XIV
Robert E. Karlsen; Douglas W. Gage; Charles M. Shoemaker; Grant R. Gerhart, Editor(s)

© SPIE. Terms of Use
Back to Top