Share Email Print
cover

Proceedings Paper

In vivo experiments of laser thermotherapy on liver tissue with FBG temperature distribution sensor
Author(s): Na Chen; Shaofeng Chen; Hongfei Zhu; Shupeng Liu; Zhenyi Chen; Fufei Pang; Tingyun Wang
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In this paper, we report an in vivo experimental study of liver tissue during Laser Induced Interstitial Thermotherapy (LITT). Single FBG was used in the experiments to measure the temperature distribution profile of the bio tissue in real time. Ideally, the goal of LITT is to kill pathological tissue thoroughly and minimize its damage to surrounding healthy tissue, especially vital organs. The extent of treated tissue damage in the therapy is mainly dependent on the irradiation time and the laser power density at the tissue surface. Therefore, monitoring the dynamic change of the exact temperature distribution of the tissue is a key point for the safety of this treatment. In our experiments, FBG was embedded in the laser irradiated bio tissues and used as fully distributed temperature sensor. During the therapy, its reflection spectra were recorded and transmitted to PC in real time. The temperature profile along the FBG axial was reconstructed from its reflection spectrum by the spectra inversion program running on the PC. We studied the dependence of the temperature distribution and the laser output power experimentally and compared the results of in vivo and in vitro under similar laser irradiating conditions. Experimental results demonstrate the effectiveness of this method. Due to influence of body temperature, the in vivo measured temperature is higher than the in vitro one with an almost constant temperature difference value, but the slope and trend of the measured temperature curves in vivo and in vitro are almost identical.

Paper Details

Date Published: 19 May 2012
PDF: 6 pages
Proc. SPIE 8376, Photonic Microdevices/Microstructures for Sensing IV, 83760B (19 May 2012); doi: 10.1117/12.919168
Show Author Affiliations
Na Chen, Shanghai Univ. (China)
Shaofeng Chen, Shanghai Univ. (China)
Hongfei Zhu, Shanghai Univ. (China)
Shupeng Liu, Shanghai Univ. (China)
Zhenyi Chen, Shanghai Univ. (China)
Fufei Pang, Shanghai Univ. (China)
Tingyun Wang, Shanghai Univ. (China)


Published in SPIE Proceedings Vol. 8376:
Photonic Microdevices/Microstructures for Sensing IV
Xudong Fan; Hai Xiao; Anbo Wang, Editor(s)

© SPIE. Terms of Use
Back to Top