
Proceedings Paper
DSP design for real-time hyperspectral target detection based on spatial-spectral information extractionFormat | Member Price | Non-Member Price |
---|---|---|
$14.40 | $18.00 |
![]() |
GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. | Check Access |
Paper Abstract
Military target detection is an important application of hyperspectral remote sensing. It highly demands real-time or near
real-time processing. However, the massive amount of hyperspectral image data seriously limits the processing speed.
Real-time image processing based on hardware platform, such as digital signal processor (DSP), is one of recent
developments in hyperspectral target detection. In hyperspectral target detection algorithms, correlation matrix or
covariance matrix calculation is always used to whiten data, which is a very time-consuming process. In this paper, a
strategy named spatial-spectral information extraction (SSIE) is presented to accelerate the speed of hyperspectral
image processing. The strategy is composed of bands selection and sample covariance matrix estimation. Bands selection
fully utilizes the high-spectral correlation in spectral image, while sample covariance matrix estimation fully utilizes the
high-spatial correlation in remote sensing image. Meanwhile, this strategy is implemented on the hardware platform of
DSP. The hardware implementation of constrained energy minimization (CEM) algorithm is composed of hardware
architecture and software architecture. The hardware architecture contains chips and peripheral interfaces, and software
architecture establishes a data transferring model to accomplish the communication between DSP and PC. In experiments,
the performance on software of ENVI with that on hardware of DSP is compared. Results show that the processing speed
and recognition result on DSP are better than those on ENVI. Detection results demonstrate that the strategy
implemented by DSP is sufficient to enable near real-time supervised target detection.
Paper Details
Date Published: 24 May 2012
PDF: 9 pages
Proc. SPIE 8390, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XVIII, 83902M (24 May 2012); doi: 10.1117/12.918386
Published in SPIE Proceedings Vol. 8390:
Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XVIII
Sylvia S. Shen; Paul E. Lewis, Editor(s)
PDF: 9 pages
Proc. SPIE 8390, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XVIII, 83902M (24 May 2012); doi: 10.1117/12.918386
Show Author Affiliations
Wei Yang, Ctr. for Earth Observation and Digital Earth (China)
Graduate Univ. of the Chinese Academy of Sciences (China)
Bing Zhang, Ctr. for Earth Observation and Digital Earth (China)
Graduate Univ. of the Chinese Academy of Sciences (China)
Bing Zhang, Ctr. for Earth Observation and Digital Earth (China)
Lianru Gao, Ctr. for Earth Observation and Digital Earth (China)
Yuanfeng Wu, Ctr. for Earth Observation and Digital Earth (China)
Yuanfeng Wu, Ctr. for Earth Observation and Digital Earth (China)
Published in SPIE Proceedings Vol. 8390:
Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XVIII
Sylvia S. Shen; Paul E. Lewis, Editor(s)
© SPIE. Terms of Use
