Share Email Print
cover

Proceedings Paper

Ultra-low noise large-area InGaAs quad photoreceiver with low crosstalk for laser interferometry space antenna
Author(s): Abhay Joshi; Shubhashish Datta; Jim Rue; Jeffrey Livas; Robert Silverberg; Felipe Guzman Cervantes
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Quad photoreceivers, namely a 2 x 2 array of p-i-n photodiodes followed by a transimpedance amplifier (TIA) per diode, are required as the front-end photonic sensors in several applications relying on free-space propagation with position and direction sensing capability, such as long baseline interferometry, free-space optical communication, and biomedical imaging. It is desirable to increase the active area of quad photoreceivers (and photodiodes) to enhance the link gain, and therefore sensitivity, of the system. However, the resulting increase in the photodiode capacitance reduces the photoreceiver's bandwidth and adds to the excess system noise. As a result, the noise performance of the front-end quad photoreceiver has a direct impact on the sensitivity of the overall system. One such particularly challenging application is the space-based detection of gravitational waves by measuring distance at 1064 nm wavelength with ~ 10 pm/√Hz accuracy over a baseline of millions of kilometers. We present a 1 mm diameter quad photoreceiver having an equivalent input current noise density of < 1.7 pA/√Hz per quadrant in 2 MHz to 20 MHz frequency range. This performance is primarily enabled by a rad-hard-by-design dualdepletion region InGaAs quad photodiode having 2.5 pF capacitance per quadrant. Moreover, the quad photoreceiver demonstrates a crosstalk of < -45 dB between the neighboring quadrants, which ensures an uncorrected direction sensing resolution of < 50 nrad. The sources of this primarily capacitive crosstalk are presented.

Paper Details

Date Published: 25 September 2012
PDF: 10 pages
Proc. SPIE 8453, High Energy, Optical, and Infrared Detectors for Astronomy V, 84532G (25 September 2012); doi: 10.1117/12.918285
Show Author Affiliations
Abhay Joshi, Discovery Semiconductors, Inc. (United States)
Shubhashish Datta, Discovery Semiconductors, Inc. (United States)
Jim Rue, Discovery Semiconductors, Inc. (United States)
Jeffrey Livas, NASA Goddard Space Flight Ctr. (United States)
Robert Silverberg, NASA Goddard Space Flight Ctr. (United States)
Felipe Guzman Cervantes, Albert-Einstein-Institut (Germany)


Published in SPIE Proceedings Vol. 8453:
High Energy, Optical, and Infrared Detectors for Astronomy V
Andrew D. Holland; James W. Beletic, Editor(s)

© SPIE. Terms of Use
Back to Top