Share Email Print

Proceedings Paper

Simultaneous acoustic and dielectric real time curing monitoring of epoxy systems
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The attainment of structural integrity of the reinforcing matrix in composite materials is of primary importance for the final properties of the composite structure. The detailed monitoring of the curing process on the other hand is paramount (i) in defining the optimal conditions for the impregnation of the reinforcement by the matrix (ii) in limiting the effects of the exotherm produced by the polymerization reaction which create unwanted thermal stresses and (iii) in securing optimal behavior in matrix controlled properties, such as off axis or shear properties and in general the durability of the composite. Dielectric curing monitoring is a well known technique for distinguishing between the different stages of the polymerization of a typical epoxy system. The technique successfully predicts the gelation and the vitrification of the epoxy and has been extended for the monitoring of prepregs. Recent work has shown that distinct changes in the properties of the propagated sound in the epoxy which undergoes polymerization is as well directly related to the gelation and vitrification of the resin, as well as to the attainment of the final properties of the resin system. In this work, a typical epoxy is simultaneously monitored using acoustic and dielectric methods. The system is isothermally cured in an oven to avoid effects from the polymerization exotherm. Typical broadband sensors are employed for the acoustic monitoring, while flat interdigital sensors are employed for the dielectric scans. All stages of the polymerization process were successfully monitored and the validity of both methods was cross checked and verified.

Paper Details

Date Published: 30 March 2012
PDF: 7 pages
Proc. SPIE 8346, Smart Sensor Phenomena, Technology, Networks, and Systems Integration 2012, 83461I (30 March 2012); doi: 10.1117/12.915481
Show Author Affiliations
G. Gkikas, Univ. of Ioannina (Greece)
Ch. Saganas, Univ. of Ioannina (Greece)
S. A. Grammatikos, Univ. of Ioannina (Greece)
D. G. Aggelis, Univ. of Ioannina (Greece)
A. S. Paipetis, Univ. of Ioannina (Greece)

Published in SPIE Proceedings Vol. 8346:
Smart Sensor Phenomena, Technology, Networks, and Systems Integration 2012
Theodore E. Matikas, Editor(s)

© SPIE. Terms of Use
Back to Top