Share Email Print

Proceedings Paper

Microscopic and macroscopic descriptions of electromagnetic-field propagation in nonlinear dispersive and absorbing media
Author(s): Verne L. Jacobs
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Microscopic and macroscopic descriptions of electromagnetic-field propagation relevant to resonant pumpprobe optical phenomena, such as electromagnetically induced transparency, in quantized many-electron systems are formulated within the framework of a general reduced-density-matrix approach. Time-domain (equation-of-motion) and frequency-domain (resolvent-operator) formulations are developed in a unified and self-consistent manner. A semiclassical perturbation-theory treatment of the electromagnetic interaction is adopted, in which the electromagnetic field is described as a classical field satisfying either the microscopic form or the macroscopic form of the Maxwell equations. However, it is emphasized that a quantized-field approach is essential for a fully self-consistent quantummechanical formulation. Compact Liouville-space operator expressions are obtained for the linear and the general (n'th order) non-linear electromagnetic-response tensors for moving many-electron systems. These expressions can be evaluated for coherent initial electronic excitations and for the full tetradic-matrix form of the Liouville-space selfenergy operator in the Markov (short-memory-time) approximation. Environmental interactions can be treated in terms of the Liouville-space self-energy operator, and the influence of Zeeman coherences on electromagnetic-field propagation can be investigated by including an applied magnetic field together with the electromagnetic field.

Paper Details

Date Published: 8 February 2012
PDF: 12 pages
Proc. SPIE 8273, Advances in Slow and Fast Light V, 82730Z (8 February 2012); doi: 10.1117/12.914734
Show Author Affiliations
Verne L. Jacobs, U.S. Naval Research Lab. (United States)

Published in SPIE Proceedings Vol. 8273:
Advances in Slow and Fast Light V
Selim M. Shahriar; Frank A. Narducci, Editor(s)

© SPIE. Terms of Use
Back to Top