Share Email Print

Proceedings Paper

Strained confinement layers in InP quantum dot lasers
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We demonstrate lower temperature sensitivity at high temperature in a strained layer InP/AlGaInP self-assembled quantum dot design grown by MOVPE. The lasers emit between 700 - 730 nm, finding application in photodynamic therapies and bio-photonic sensing. We previously achieved a 300 K threshold current density of 150 Acm-2 in similar structures for 2mm long lasers with as-cleaved facets, however at elevated temperatures Jth increases rapidly with temperature. To address this issue we redesign the layers around the active regions, consisting of five layers of dots, each grown on a lower confining layer of (Al0.30Ga0.70)InP lattice matched to GaAs, formed from 3 mono-layers of InP and with a GaxIn(1-x)P upper confining layer. We grew two series of samples, x=0.43-0.58 with (Al0.70Ga0.30)0.51In0.49P waveguide claddings, and x=0.52-0.58 (AlInP claddings). Dot properties are strongly influenced by the UCL. Properties varied with Ga fraction. Measured absorption and lasing energies increase with Ga percentage, maintaining a constant separation from upper confining layer transition energies. A Ga fraction of x=0.54 (lightly tensile strained with respect to GaAs) gave the strongest and most well defined absorption, the lowest 300K Jth for 2mm long broad area lasers (uncoated facets) of 180 Acm-2 and lowest rate of Jth increase with temperature.

Paper Details

Date Published: 8 February 2012
PDF: 9 pages
Proc. SPIE 8277, Novel In-Plane Semiconductor Lasers XI, 827711 (8 February 2012); doi: 10.1117/12.913613
Show Author Affiliations
Stella N. Elliott, Cardiff Univ. (United Kingdom)
Peter M. Smowton, Cardiff Univ. (United Kingdom)
Andrey B. Krysa, The Univ. of Sheffield (United Kingdom)

Published in SPIE Proceedings Vol. 8277:
Novel In-Plane Semiconductor Lasers XI
Alexey A. Belyanin; Peter M. Smowton, Editor(s)

© SPIE. Terms of Use
Back to Top