Share Email Print
cover

Proceedings Paper

Combining supine MRI and 3D optical scanning for improved surgical planning of breast conserving surgeries
Author(s): Matthew J. Pallone; Steven P. Poplack; Richard J. Barth; Keith D. Paulsen
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Image-guided wire localization is the current standard of care for the excision of non-palpable carcinomas during breast conserving surgeries (BCS). The efficacy of this technique depends upon the accuracy of wire placement, maintenance of the fixed wire position (despite patient movement), and the surgeon's understanding of the spatial relationship between the wire and tumor. Notably, breast shape can vary significantly between the imaging and surgical positions. Despite this method of localization, re-excision is needed in approximately 30% of patients due to the proximity of cancer to the specimen margins. These limitations make wire localization an inefficient and imprecise procedure. Alternatively, we investigate a method of image registration and finite element (FE) deformation which correlates preoperative supine MRIs with 3D optical scans of the breast surface. MRI of the breast can accurately define the extents of very small cancers. Furthermore, supine breast MR reduces the amount of tissue deformation between the imaging and surgical positions. At the time of surgery, the surface contour of the breast may be imaged using a handheld 3D laser scanner. With the MR images segmented by tissue type, the two scans are approximately registered using fiducial markers present in both acquisitions. The segmented MRI breast volume is then deformed to match the optical surface using a FE mechanical model of breast tissue. The resulting images provide the surgeon with 3D views and measurements of the tumor shape, volume, and position within the breast as it appears during surgery which may improve surgical guidance and obviate the need for wire localization.

Paper Details

Date Published: 17 February 2012
PDF: 8 pages
Proc. SPIE 8316, Medical Imaging 2012: Image-Guided Procedures, Robotic Interventions, and Modeling, 83163B (17 February 2012); doi: 10.1117/12.912803
Show Author Affiliations
Matthew J. Pallone, Dartmouth College (United States)
Steven P. Poplack, Dartmouth Hitchcock Medical Ctr. (United States)
Richard J. Barth, Dartmouth Hitchcock Medical Ctr. (United States)
Keith D. Paulsen, Dartmouth College (United States)


Published in SPIE Proceedings Vol. 8316:
Medical Imaging 2012: Image-Guided Procedures, Robotic Interventions, and Modeling
David R. Holmes; Kenneth H. Wong, Editor(s)

© SPIE. Terms of Use
Back to Top